Fourier Transforms of Finite Chirps
نویسندگان
چکیده
Chirps arise in many signal processing applications. While chirps have been extensively studied both as functions over the real line and the integers, less attention has been paid to the study of chirps over finite groups. We study the existence and properties of chirps over finite cyclic groups of integers. In particular, we introduce a new definition of a finite chirp which is slightly more general than those that have previously been used. We explicitly compute the discrete Fourier transforms of these chirps, yielding results that are number-theoretic in nature. As a consequence of these results, we determine the degree to which the elements of certain finite tight frames are well-distributed.
منابع مشابه
Quantum Fourier transforms for extracting hidden linear structures in finite fields ∗
We propose a definition for quantum Fourier transforms in settings where the algebraic structure is that of a finite field, and show that they can be performed efficiently by a quantum computer. Using these finite field quantum Fourier transforms, we obtain the strongest separation between quantum and classical query complexity known to date—specifically, we define a problem that requires Ω(2) ...
متن کاملFast Fourier Transforms for Finite Inverse Semigroups
We extend the theory of fast Fourier transforms on finite groups to finite inverse semigroups. We use a general method for constructing the irreducible representations of a finite inverse semigroup to reduce the problem of computing its Fourier transform to the problems of computing Fourier transforms on its maximal subgroups and a fast zeta transform on its poset structure. We then exhibit exp...
متن کاملClassical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملMeasurement of Plain Weave Fabrics Density Using Fourier Transforms
Warp and weft spacing and its coefficient of variation affect the physical properties of fabrics such as fabric hand, frictional and mechanical properties. In this paper the weft and warp spacing and its coefficient of variation for plain weave is calculated using Fourier transforms. Different methods have been used in this work including autocorrelation function. First, two dimensional power s...
متن کاملFourier Transforms and Bent Functions on Finite Abelian Group-Acted Sets
Let G be a finite abelian group acting faithfully on a finite set X. As a natural generalization of the perfect nonlinearity of Boolean functions, the G-bentness and Gperfect nonlinearity of functions on X are studied by Poinsot et al. [6, 7] via Fourier transforms of functions on G. In this paper we introduce the so-called G-dual set X̂ of X, which plays the role similar to the dual group Ĝ of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006